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ABSTRACT
Decades of research using remotely sensed data have extracted evidence for the presence of an ocean in the
northern lowlands of Mars in the Hesperian (∼3.3 Ga), but these claims have remained controversial due
to the lack of in situ analysis of the associated geologic unit, the Vastitas Borealis Formation (VBF).The
Tianwen-1/Zhurong rover was targeted to land within the VBF near its southern margin and has traversed
almost 2 km southward toward the interpreted shoreline. We report here on the first in situ analysis of the
VBF that reveals sedimentary structures and features in surface rocks that suggest that the VBF was
deposited in a marine environment, providing direct support for the existence of an ancient (Hesperian)
ocean onMars.
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INTRODUCTION
The search for water habitats potentially conducive
to life on early Mars has led to the recognition of
widespread fluvial valley networks [1], open-basin
lakes [2], closed-basin lakes [3], large-scale fluvial
outflow channels [4], deltas (e.g. [5–7]) and alluvial
fans (e.g [8]). In addition, the presence of a former
ocean has been suggested by observations and inter-
pretations of extensive deposition on the northern
plains exposed in impact craters [9], isotopic studies
of the Martian hydrosphere [10], analysis of base-
level controls of progressive channel erosion [11]
and radar properties of the northern plains [12].
Most dramatic in scale of these candidate aque-
ous environments are ocean-scale bodies [13] of
water hypothesized to have occupied the northern
lowlands of Mars in the Noachian (∼4.1–3.7 Ga)
and Hesperian (∼3.7–3.0 Ga) eras of early Mars
history [14]. However, degradation and Hesperian
volcanic resurfacing, glacial, periglacial and mud
volcanism processes in the northern lowlands
[15] have obscured the features interpreted to be
associated with the proposed Late-Noachian

ocean (e.g. Arabia level [16]). The younger of
these proposed shorelines (Late Hesperian; the
Deuteronilus level [17] (Fig. 1)) is associated
with the circum-Chryse region outflow channels
[4], the sites of huge mega-floods of water, clearly
emptying into the northern lowlands [13]. Anal-
ysis of the margins of the northern lowlands has
revealed a curvilinear boundary interpreted as a
former shoreline of this ocean. This interpretation
is based on analysis of a zone of morphological
change, approximately surrounding and paralleling
the transition from the northern plains to the
southern highlands of Mars. This zone extends for
thousands of kilometers apparently preserving the
shoreline of a huge ancient ocean produced by
catastrophic floods reaching the northern plains
through the outflow channels [18,19]. Geological
mapping of the northern plains of Mars [20] has
documented the presence of a lowlands-wide
geological unit, the Vastitas Borealis Formation
(VBF), whose Late-Hesperian age is contempora-
neous with the fluvial outflow channels, and whose
outer contact closely coincides with the features
interpreted as a shoreline [18].These characteristics
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Figure 1. The traverse of the Zhurong rover and key observations (Sol 31, Sol 42, Sol 50, Sol 102 and Sol 274) of NaTeCam and (Sol 32, Sol 43, Sol 50,
Sol 103 and Sol 276) MSCam as of 30 March 2022 (Sol 344). The star marks the landing site, where an image of the rover and lander was taken by a
separate camera on the ground. Color-coded MOLA Mission Experiment Gridded Data Record with polar stereo projection (centered at 60◦N, 120◦E)
shows the regional topographic characteristics with the star indicating the landing site in southern Utopia Planitia. Dots in the middle figure indicate
the waypoints with both MSCam and NaTeCam observations. The line connecting these dots is an approximation of the traverse using the locations
of the NaTeCam observations. The scales in all the MSCam images are 15 cm. The background image of the traverse is a mosaic of Tianwen-1 HiRIC
images (HX1 GRAS HIRIC DIM 0.7 0004 251515N1095850E A). The upper right Mars global topography figure is based on MOLA data and the curved
line inside indicates the Deuteronilus shoreline [18].

and relationships have ledmany to interpret theVBF
as the sedimentary deposit of an ancient oceanic
body of water probably formed from massive in-
fluxes of water discharges from the outflow channels
and other fluvial pathways, plus groundwater flows
[13,21].These outflow channels are thought to have

been formed by cracking of the crust and cryosphere
by dikes and fractures and the catastrophic release of
pressurized groundwater [4]. In addition, evidence
has been presented for distinctive deposits that are
interpreted to represent the formation of at least
two megatsunami, probably resulting from impacts
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into such an oceanic body of water [22–25] and
separated by a major regression phase [24,25].
Recent scientific approaches to understanding the
paleoclimate of ancient Mars have been dominated
by computer modeling that applies well-verified
physical laws to simulating past conditions on the
planet (e.g. [26–30]). Many of these models (e.g.
[29]) suggest that the residence time of a Hespe-
rian ocean might be relatively short geologically,
although other models (e.g. [27,28]) produce
different results. However, almost all aspects of the
proposed northern lowland oceans [31,32] and
their shorelines [18,33,34] remain controversial.

An early synthesis and analysis of evidence for a
northern lowland ocean [21] pointed out that the
most compelling evidence for a Hesperian ocean
was the presence, distribution, contacts and regional
characteristics of the VBF, and recommended more
detailed in situ study of this unit. However, the na-
ture of the VBF, its internal structure and its man-
ner and environment of formation have remained
unknown. Direct evidence is required to examine
whether the VBF is a residual sedimentary deposit
representing an oceanic, shallow marine or coastal
shoreline-related environment, or a mantling unit
emplaced by spin-axis/orbital variations, or an ae-
olian deposit representing reworked earlier units
formedduring the last 3 billion years ofMars history.

On 15 May 2021, China’s Tianwen-1/Zhurong
rover successfully landed in the VBF in the north-
ern lowlands of Mars (southern Utopia Planitia,
109.925◦E, 25.066◦N) [35,36] ∼500 m below and
∼282 km north of the southern VBF contact and
proposed Deuteronilus shoreline [18] (Fig. 1 and
Supplementary Fig. S1). Since its landing, it has
been engaged in an exploration traverse southward
toward the proposed shoreline, exploring potential
surface exposures of the VBF and rocks excavated
from the interior of the VBF by subsequent impacts,
and the subsurface structure of the landing area.
In the last 12 months, the Zhurong rover has trav-
elled ∼1921 m, pausing on 18 May 2022 for win-
ter dormancy. The area traversed is relatively flat
with local elevation changes of ∼5 m (Fig. 1 and
Supplementary Fig. S2). From an orbital perspec-
tive, the region is relatively dusty, inhibiting suc-
cessful orbital spectrometer mineralogical determi-
nation [37].The Zhurong rover, however, can make
detailed in situ observations of surface rocks using
different imaging and analysis systems, including (i)
Navigation andTerrainCameras (NaTeCam) [38],
(ii) a Multispectral Camera (MSCam) [39] and
(iii) the Micro-imaging Camera [40]. The NaTe-
Cam has acquired 106 groups of panoramic images,
revealingmany boulders and blocks in the vicinity of
the Zhurong traverse (Supplementary Figs S3–S5).

RESULTS AND INTERPRETATIONS
The MSCam has documented 23 rocks. Most of
them show laminations and are covered with vary-
ing degrees of dust on their surface. Five boulders
and blocks were chosen for analysis in this study us-
ing the following selection criteria: (i) not severely
modified by wind erosion, later alteration, including
impact induced fracturing, and (ii) large enough to
show the variations in the observed layers. Detailed
morphological observations and analyses of char-
acteristic features and internal structures are pre-
sented; thesedata form thebasis for interpretationof
their environmentof origin.These rocks, several cen-
timeters to several tens of centimeters in dimension,
are scattered with various orientations (Fig. 1 and
Supplementary Figs S3–S8), probably as a result of
being ejected from the subsurface by nearby impact
events. These exposed rocks are variably covered
by wind-blown debris on the leeward surfaces and
scoured by wind abrasion on the windward faces,
forming broadly faceted surfaces as commonly seen
on terrestrial ventifacts, whereas some pitted sur-
faces have been interpreted to be related to brine dis-
solution [35].The locallywell-etched faces preferen-
tially highlight the presence of features interpreted
to be primary sedimentary structures, indicating that
they are all sedimentary rocks.

These observations reveal a wide range of sedi-
mentary structures of the VBF, including bedding
and inclined bedding features, documented along
the almost 2-km-long traverse from the landing site
in the VBF toward the proposed Deuteronilus level
shoreline. In the following section, we describe the
series of rocks excavated from the VBF by post-VBF
impacts, outlining their internal structures and com-
paring them to features seen in different terrestrial
[41] and known Martian environments [42,43] in
order to assess their modes of origin and the origin
of the VBF. Since these observations are all from the
vicinity of the Zhurong rover traverse, we use the in-
formal term ‘Zhurong Member of the VBF’ for the
rocks described herein.

Sol 50–8 (Fig. 2) is an angular boulder ∼1 m
across. Observed features include a series of ∼5- to
8-cm-thick left-dipping planes interpreted as bed-
ding surfaces of sedimentary rocks (Fig. 2a′). These
bedding surfaces bound internal cross-laminated
layers that dip both left and right at∼30◦, and locally
up to ∼42◦ from the main bedding, and are most
prominently visible along the top of the exposure
(Fig. 2b), the lower right corner (Fig. 2d and e) and
on a block (in box Fig. 2c) behind themain boulder.
Most of the cross-laminations are planar (Fig. 2d)
but some (such as in the middle of the block) dis-
play curved concave-up cross-laminae that merge
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Figure 2. A boulder (Sol 50–8) showing typical shallow marine sedimentary structures of the Zhurong Member. Block diagrams show interpreted
sedimentary structures. The boulder is∼110 cm across and preserves a series of left-dipping planar surfaces separating 2- to 10-cm-thick tabular units
interpreted to be primary sedimentary bedding and is generally consistent with that on the surrounding ground. The beds have internal laminations
that differ from bed to bed. These features are used to interpret the primary depositional environment. Note that the boulder is locally sculpted by
wind, in places covered by wind-blown dust or sand, and possibly affected by chemical weathering or cementation [45]. (a′′) Stratigraphic section
drawn perpendicular to the bedding along the front face of the outcrop, and placing boulder c on top, as it appears to strike with a small missing
gap. The section is divided into six units of planar, herringbone, convex-up and trough cross-laminated layers, suggestive of deposition by bidirectional
subaqueous currents. Details of features from the boxes on panel (a). (b) Features interpreted as herringbone cross-laminae formed by bipolar current
directions, typical of alternating currents. (c) Features interpreted as trough cross-lamina from a separate boulder in the background, representing
bipolar current directions, overlain by planar cross-laminated sand. The boulder is possibly out of place or even upside down, but appears to have
similar orientation as the main boulder. (d) Features interpreted as planar bedding visible in 3D around a corner in the boulder, overlain by a concave
cross-laminated unit. (e) Features interpreted as herringbone cross-lamina, strongly etched by wind, forming a pseudo-fan shape.

asymptotically with the underlying bedding surface
(Fig. 2b–e). More rarely, the cross-laminations are
slightly convex-up, as in the middle of Fig. 2b, and
merge with the presumed upper surface, which is
present in some trough cross-laminated deposits on
Earth [44].

The sedimentary structures of the composite sec-
tion from themain boulder and boulder c are shown
in Fig. 2a′′. In boulder c (Fig. 2c), the thicknesses
of the lamina-sets are ∼2.5 cm, indicating that the
height of the ripples was several centimeters. The
size of the sedimentary structures suggests that the
rock is composed of silt and fine-to-medium-grained
sand particles (SupplementaryTable S1).The cross-
laminations include herringbone and trough forms
(Fig. 2b, c and e), which differ from typical lacus-
trine or aeolian deposits on Earth [42,44] or Mars

(e.g. Gale and Jezero crater basins) [43], and char-
acterize shoreline environments with bidirectional
current directions on Earth [46]. Some aeolian pro-
cesses may produce slightly similar bidirectional de-
posits [47] but they are different from those de-
scribed here in that in aeolian ‘bidirectional’ layers,
there should be a mud layer interbedded between
two sand layers that contain the oppositely dipping
lamina.Thus, these planar and cross-laminations are
interpreted to indicate deposition by an alternating
aqueous current, and on Earth these are typical of
tidal or foreshore environments [41] (Supplemen-
tary Fig. S9 and Supplementary Table S1).

Boulder Sol 43–07 (Fig. 3) is ∼20 × 60 cm in
dimension and exposes a series of beds and laminae
interpreted to consist of alternating lens-shaped
channels with internal cross-laminations and others
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Figure 3. Multispectral Camera (MSCam) images show a variety of submarine environment depositional structures on the Block Sol 43–07 (a). The
rocky surface shows seven main stratigraphic micro-units including, from base to top, (1) a planar laminated unit, (2) cross-bedded channel deposit,
(3) a horizontal and planar cross-laminated unit with bidirectional dips on cross-laminations, (4) a planar and trough cross-bedded unit, (5) and (6) channel
deposit with steep point-bar-like laminations and (7) low-angle cross-laminated unit. Panels (b) and (c) show a measured and interpreted schematic
stratigraphic column of this small section of the VBF.

oriented parallel to the channel, which are common
in fluvial, tidal and related aqueous channel envi-
ronments on Earth [48,49]. On the basis of the size
of the cross-lamina (Supplementary Table S1) and
micro-images in Supplementary Fig. S8, the spec-
ulative grain size of these sedimentary structures
is made of coarse silt to very fine sand-sized parti-
cles. On the line drawing, we divide this outcrop
into seven different micro-units that have slightly
different characteristics (Fig. 3b). Some are planar
tabular bedding units and three (Micro-units 2, 5
and 6, Fig. 3b and c) are small (5–15 cm) lenticular
units that are interpreted to be small channels, each
capped by several-centimeter-thick cross-laminated
units that suggest bidirectional current flow.Overall,
the interpreted channels and bidirectional currents
in the capping units are not seen in aeolian envi-
ronments and are similar to those seen in terrestrial
low-energy shallow marine environments, and are
distinctive from fluvial environments [43]. For
most aeolian and fluvial deposits, sedimentary
structures indicate a unidirectional mode showing
the movement direction of the wind. However,
certain sections cut obliquely across the transport
direction of large-scale linear aeolian dunes some-
times show similar bidirectional patterns as in the
column, but are significantly different in scale and
morphology from the bidirectional deposit in the
marine environment (Supplementary Fig. S9 and
description). In Fig. 3c, we present an outcrop-scale
stratigraphic section through boulder Sol 43 07

that shows the small-scale lenticular channels and
bi-modal paleocurrent directions inferred from
oppositely dipping cross-lamina. This stratigraphic
section of the ZhurongMember, albeit a minor part
of the whole VBF, clearly shows features remarkably
distinct from aeolian and fluvial environments,
and also different from the disorganized patterns
of mud volcanoes, which were present in places
on early Mars [50–52], but similar to low-energy
subaqueous environments on Earth [49].

Block Sol 32–05 is a tabular block ∼20 cm long
and 10 cm across (Supplementary Fig. S6). It dis-
plays an upper bright layer and a lower darker layer,
interpreted as primary bedding. Grain-size analysis
suggests that the upper layer is sandy and the lower
layer is silt to mud (Supplementary Table S1, here
we only provide a speculative grain size). Both beds
show internal layering at angles to the main bed-
ding. The most prominent are concave-up to planar
laminations in the upper layer that dip to the left and
converge on a plane (lower bedding surface) parallel
to the upper surface of the block (Supplementary
Fig. S6a and a′). We interpret these oblique layers
as compound cross-laminations [53,54] in which
the main layer consists of several internal bedforms
that are themselves cross-laminated. Below this
plane, the rock is darker and more recessed in the
block than the upper part, indicating that this part is
less resistant to the weathering than the prominent
upper layer. Differential weathering is most likely
due to the grain-size variation in the different
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layers, with recessed parts being finer-grained, with
fainter laminations that dip to the right. Together,
these sets of cross-laminations, with different grain
sizes, suggest deposition by bidirectional currents
of different strengths, which differs from aeolian
deposits by virtue of the difference in grain size of
the stacked layers [46]. The upper bed, displaying
prominent compound cross-laminae, including
concave-up cross-laminations each ∼2 cm long, is
suggestive of compound cross-strata consisting of
several descending sets of trough cross-laminations
(Supplementary Fig. S6b and d). These are mor-
phologically the same type as those typical of
deposition/accretion along the downflow sides of
migrating compound bedforms [41]. The boundary
between the upper and lower beds shows lenticular
features with characteristics of both the upper,
coarser-grained layer and the lower, finer-grained
layer (Supplementary Fig. S6c and c′). Some of the
discontinuous features are inclined and some are
parallel to the bedding surface, similar to lenticular
and flaser-type bedding and mud drapes seen in
mixed mud and sand deposits on Earth [49]. The
cross-laminations in the lower bed are planar in cross
section, dipping uniformly to the right (Supplemen-
tary Fig. S6a′). Together, these two beds with oppo-
sitely dipping cross-laminations indicate bipolar de-
positional currents. Furthermore, in terrestrial shal-
low submarine environments, such a thicker upper
coarser-grained layer overlying a finer-grained lower
layer (panels in Supplementary Fig. S6a and a′) has
been interpreted to indicate a stronger flood tide,
following a lower-energy ebb tide (Supplementary
Fig. S9c).

Boulder Sol 43–06 (Supplementary Fig. S7) is
∼50 cm across. It displays about six left-dipping
1- to 3-cm-thick relatively light and dark parallel
layers, interpreted as sedimentary beds of different
grain size or composition. Grain-size analysis
(Supplementary Table S1) suggests that these are
dominantly fine-to-medium-grained sands. The
prominent left- and right-dipping cross-laminations
(Supplementary Fig. S7a and a′) features are not
typically seen in aeolian or fluvial environments on
Mars [43]. The top of the boulder is partly covered
by dust but traces of the cross-laminations protrude
through the dusty layer, exposing curved traces
suggestive of trough cross-beds (see interpreta-
tion in lower part of panel in Supplementary Fig.
S7a′). Wind erosion has formed small grooves on
the sides of the boulder (color lines on panel in
Supplementary Fig. S7a′) and may have enhanced
the cross-laminations by etching. Two relatively
bright areas on the right side of the rock may be
either favorably oriented to reflect additional light
or may be larger atypical cobble-sized fragments in

the clastic sedimentary layers. Supplementary Figs
S7b and 7c show enlarged sections of this block with
line sketches; these appear consistent with them
being either artifacts of the lighting and weathering,
or primary sedimentary features. If they are larger
sedimentary fragments, then they could be similar to
residual blocks that are ripped up by currents in tidal
systems on Earth or they could be pre-depositional
ventifacts or erosional lags due to the transient expo-
sure, and subsequently deposited with surrounding
cross-laminated sandy layers [55,56].

Boulder Sol 103–6 consists of two main
wind-sculpted blocks, 30 cm and >70 cm across
(Supplementary Fig. S8a and b), consisting of
fine-to-medium sand to mud-sized particles (Sup-
plementary Table S1). Despite strong erosion by
wind of these ventifacts, the larger one preserves
several nearly parallel layers interpreted to be
sedimentary in origin. Two of these (left and in
the center of the boulder) have internal parallel to
slightly oblique laminations (labeled with bedding
symbols) whereas intervening layers show convex
cross-laminations that merge with the underlying
parallel laminated layers. In the large boulder, both
layers with these laminations are similar to those
in terrestrial marine environments influenced by
currents.The small boulder in the foreground shows
a relatively bright upper section (coarse-grained
sand-sized particles) over a darker lower part
(finer-grained mud particles).The upper part shows
numerous prominent cross-laminations dipping
at 30◦ to the left whereas the lower darker unit
consists of several thinner finer-grained layers
(beds) that have fainter and thinner flaser-like
bedding consisting of small lenses of sand and mud,
and cross-laminations that dip to the right. In the
micro-images of the upper part of this boulder
(Supplementary Fig. S8c and d), the scale of the
lamina-set is ∼5 mm and the cross-lamina can
be clearly observed in both the weathered surface
(Supplementary Fig. S8c) and the fresh surface
(Supplementary Fig. S8d), where the latter was
formed due to the laser abrasion of theMars Surface
Composition Detector (MarSCoDe) instrument
of the rover. Since the laser abrader removed the
surface layer visible in (c) for producing the image
in (d), we can show that the laminations are primary
sedimentary features and not produced by wind
abrasion. Together these appear to form an asym-
metric herringbone-like cross-lamination set, which
is indicative of bipolar current directions, with the
flow to the left being stronger than the flow to the
right. On Earth, the combination of (i) curved and
planar cross-beds, (ii) herringbone cross-lamination
and (iii) thin flaser bedding is typical of deposition
in bidirectional tidal-influenced foreshore settings
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[41,55,57,58] and this assemblage is distinct from
those formed in fluvial and aeolian environments
(Supplementary Fig. S9a and b).

DISCUSSION
Taken together, the boulders and blocks of the
Zhurong Member of the VBF generally preserve
parallel-tabular bedding with local lenticular bed-
forms, with a variety of interpreted grain sizes
and sedimentary structures dominated by various
types of cross-laminations, less-common lenticular
and flaser bedding and small-scale channel struc-
tures. The cross-laminations and cosets dip in two
opposite directions indicating bidirectional pale-
ocurrent orientations and, since the thickness and
grain sizes (Supplementary Fig. S9c) are system-
atically larger on sets dipping one way and not
the other, the depositing paleocurrents can be in-
ferred to have been alternatively weak and strong.
Bidirectional current orientations are characteris-
tically formed by the regularly opposite variation
of tidal current directions and this current pattern
is not commonly present in fluvial environments,

but is common in the terrestrial shallow marine
environment.

Bidirectional current orientations are character-
istically formed by regular opposite directions of
tidal currents in terrestrial shallow marine environ-
ments and uncommonly in fluvial environments.
Although aeolian deposits on Mars also contain
some small-scale cross-laminations [59], the lack
of larger structures indicative of aeolian environ-
ments supports the interpretation that these are of
shallow marine origin. In addition, since Mars has
only two small moons, it should have low-energy
tidal systems, which is what we observe. The bed
forms and sedimentary structures described above
preserve several features that uniquely identify them
as water-laid deposits and not aeolian wind de-
posits (Supplementary Fig. S9 and Supplementary
Table S1). These distinctive features include: (i)
the small scale of these deposits contrasts with
typical aeolian deposits, which can have much
larger-scale cross-laminations; (ii) they are cut by
channels that form in subaqueous settings and not in
subaerial environments; (iii) the cross-laminations
include planar and non-planar types that merge
asymptotically with underlying bedding planes;

Figure 4. A conceptual model for the Hesperian Deuteronilus ocean, its regression and formation of the oceanic deposits of the Zhurong Member
of VBF at the Zhurong landing site. (a) Schematic stratigraphic column of the Zhurong landing site in Utopia Planitia and proximity to the interpreted
shoreline. The –3600 m contour in (b) and (c) represents the boundary of the Vastitas Borealis Formation (VBF), a smooth lowland unit consisting of
sedimentary deposits of a possible ancient oceanic water body before 3.6 Ga [18,20]. After that, ocean regression may have resulted in a shallow
marine environment near the current position of the Zhurong rover (c), which is indicated by the sedimentary structures of the Zhurong Member rocks
shown in Figs 2 and 3 and Supplementary Figs S6–S8.
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(iv) herringbone cross-strata indicate an alternating
or bidirectional depositing current and trough
bedding is generally attributed to deposition by
variable subaqueous currents; (v) although rare
in the observed boulders/blocks, finer-grained or
‘mud-sized’ drapes and flaser-lenticular bedding
and occasional candidate larger clasts within finer
layers are typical of tidal deposits, with alternating
strengths and directions of currents [57].

Considering that the landing site is ∼280 km
away from and ∼500 m below the proposed
Deuteronilus level (Fig. 4), we suggest that the de-
position of these sedimentary rocks occurred during
the regressional periodof aHesperianocean.This re-
gressive coastal topography is also present in Chryse
Planitia, significantly strengthening our interpre-
tation [24,25]. Indeed, recent ground-penetrating
radar results from the Zhurong rover describe
the presence of a subsurface multi-layered struc-
ture [60] interpreted to have formed by episodic
hydraulic flooding sedimentation related to Late-
Hesperian flooding and filling of the Utopia basin.
In addition, two impact cratering events into such an
ocean [22–25], could have formed themegatsunami
deposit. The younger of these deposits (but not the
older, which lacks evidence of significant backwash
[23]) likely involved bidirectional currents, as re-
cently proposed [23,24].

Analysis of the physical character of the sedi-
mentary structures, their groupings [41,46] and
comparison with Earth analogs [49,55,58] (Sup-
plementary Fig. S9) strongly suggest deposition
in a medium- to low-energy marine environment.
These observations provide the most compelling
‘ground’ evidence to date for the marine origin of
the Zhurong Member of the VBF and the existence
of a Hesperian ocean on Mars. The location of the
Zhurong landing site suggests that the observed
sedimentary structures could be the result of a
regression environment related to the loss of water
and demise of a northern ocean (Fig. 4).

CONCLUSION
We report on the observations of the VBF by the
Tianwen-1 Zhurong rover—the first in situ observa-
tions of a unit interpreted by many to represent the
deposits of an ancient Hesperian-aged sea. On the
basis of our analysis of layered features documented
on rocks imaged and examined by the Zhurong
rover, we interpret these to represent sedimentary
structures typical of formation in a marine environ-
ment, thus providing supporting evidence for the hy-
pothesis that the VBF is a remnant of a Hesperian
ocean.
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